
Sample posts from blog.siliconvalve.com

Simon Waight

April 29, 2024

Contents
1 Cross-posting blog posts to Mastodon, Twitter and LinkedIn using Azure

Logic Apps 1

2 Fix Logic App Connections Managed Identity errors in Bicep templates 8

List of Figures
1 Screenshot of the Mastodon Development menu screen. 2
2 Mastodon application registration page with write:statuses scope selected. 3
3 Sample Mastodon post with client application name highlighted. 4
4 Application registration displaying client details and keys. 5
5 Logic App HTTP Action configured to post a message on Mastodon. 6
6 Simple REST request to pust a post into Mastodon. 7
7 Azure Logic App that cross posts content on Mastodon, Twitter and LinkedIn. . 8

1 Cross-posting blog posts to Mastodon, Twitter and
LinkedIn using Azure Logic Apps

Welcome! If you’re reading this, then I have successfully implemented my plan to build a content
cross-posting service using Azure Logic Apps!

In the 10 years that I’ve been blogging I’ve learnt that the easiest way to get people across your
latest content is to proactively publish alerts to various social platforms. Traditionally I’ve only
ever used Twitter, LinkedIn and dev.to but am increasing my publication to Mastodon.

I blog using the SaaS-version of Wordpress from Wordpress.com which at the subscription level
I have provides only limited social endpoints to publish alerts to.

A developer loves nothing if not a good challenge, so let’s take a look at how I can build a
cross-posting solution using Azure Logic Apps!

1.0.1 Mastodon custom connector for Logic Apps

The first thing I’d usually look to do to make my life easier would be to build a custom Logic
Apps connector for the Mastodon API, similar to what I did previously with the Meetup API.

1

https://learn.microsoft.com/azure/logic-apps/logic-apps-overview
https://dev.to/simonwaight
https://joinmastodon.org/
https://blog.siliconvalve.com/posts/2020/12/01/adding-oauth2-support-to-your-meetup-api-custom-connector-for-azure-logic-apps/

At time of writing this post, the Mastodon team are still working on an autogenerated OpenAPI
spec for app developers, so I’ve decided not to use one of the existing static specifications to
avoid having to rework a connector in future.

Regardless, we can easily use Logic Apps with Mastodon to post content (also known as a ‘toot’!).
Let’s take a look at how!

1.0.2 Setup a Mastodon application identity

In order to post the content I have I will need to use the API published by Mastodon, specifically
the Post new status endpoint.

This API requires authentication and authorisation in order to be used, so I have to setup a
client registration for my Logic App which provides it with privleges to post on my behalf.

To set this up you need to visit the Mastodon server your account is homed on and then use the
Development option (1) to create a new application (2).

Figure 1: Screenshot of the Mastodon Development menu screen.

Give the application a meaningful name and set the permission scope accordingly. In my case I
will only post new items, so I select the write:statuses scope (shown by arrow in image) for
this application.

Important note: put a real web address in the application website field as this value is used
along with the application name in any posts made on Mastodon (see below).

2

https://github.com/mastodon/mastodon/issues/20572
https://github.com/mastodon/mastodon/issues/20572
https://docs.joinmastodon.org/methods/statuses/#create

Figure 2: Mastodon application registration page with write:statuses scope selected.

Here’s a sample post with the application name highlighted. You can click on this and be taken
to the web address supplied.

3

Figure 3: Sample Mastodon post with client application name highlighted.

Once I save the Application the Mastodon server returns the registration details for the appli-
cation, which will seem familiar if you’ve used OAuth previously. These are super sensitive, so
don’t share with anyone (just like it says in the screenshot!)

4

Figure 4: Application registration displaying client details and keys.

Now I have a token (highlighted in red) that I need to call the Mastodon API so let’s progress
on to building our Logic App solution.

1.0.3 Logic App Message Distributor

Ideally I’d like to drive my final solution off of a webhook tied to the Post publication event
on Wordpress, but this feature isn’t available for my Wordpress subscription, so instead I use a
simple HTTP trigger in my Logic App.

The benefit of this approach is I allow any upstream service to post to it, which means if I ever
move off Wordpress I could fairly easily do something like wire a call to the Logic App into, say,
a GitHub Action if I were looking to publish a static website.

The first step I need to take is define what data I want to send out to all the services I publish
to. For the purpose of this blog post I am going to use the following simple JSON format when
calling my Logic App.

{
"Title": "A sample blog post title",
"Summary": "This is a test blog post summary.",
"ImageRef": "https://link.to/image/for/share",
"Link": "https://blog.siliconvalve.com/"

}

The great thing in using JSON is that the HTTP trigger in the Logic App will automatically
parse the JSON and turn each property into a variable in my Logic App that I can easily reference
in Actions.

So the solution is reusable I am going to create a Parameter for the Logic App - MastodonHost
- which will hold the hostname on the Mastodon server we want to post to (‘mastodon.online’ in
my case).

5

Additionally, as the Mastodon token is sensitive, even with a restricted scope, I am still going to
place it into an Azure Key Vault secret that can be read by the Logic App at runtime using a
managed service identity.

1.0.4 Posting to Mastodon

Now we have all the bits in place we can go ahead and use the standard HTTP action to invoke
the Mastodon API.

Figure 5: Logic App HTTP Action configured to post a message on Mastodon.

The key vault secret value is passed in as part of the HTTP Authorization header as an OAuth
Bearer token and we set the content type appropriately. The body of the message contains the
status we wish to post. There are lots of other types we can publish (media and polls), but for
my use case I simply want to publish some text and a link.

If I want to post to Mastodon I can use a simple REST client such as Thunderclient to test it
out. You can see the resulting post above.

6

https://learn.microsoft.com/azure/connectors/connectors-native-http#add-an-http-action
https://www.thunderclient.com/

Figure 6: Simple REST request to pust a post into Mastodon.

1.0.5 Extending the idea

Developers love the concept of Don’t Repeat Yourself (DRY), so let’s extend our posting Logic
App to help us in other places. For my example I’ve added Twitter and LinkedIn cross-posting
which is done in parallel to my Mastodon post.

I’m not going to go into depth how to add these steps as they are well documented elsewhere
(Twitter and LinkedIn).

The full solution is visualised below - click to enlarge.

7

https://techcommunity.microsoft.com/t5/azure-developer-community-blog/azure-logic-apps-post-to-twitter/ba-p/336054
https://learn.microsoft.com/connectors/linkedinv2/#share-an-article-v2

Figure 7: Azure Logic App that cross posts content on Mastodon, Twitter and LinkedIn.

1.0.6 Wrapping it up

So, there we are - a quick no-code way to take a single piece of text, hyperlink (and an optional
image) and post it to Mastodon, Twitter and LinkedIn. You can grab the bicep deployment
template for this solution from the GitHub repository it is stored in.

The beauty of spinning this solution up in a Consumption Plan for Logic Apps is that I will only
pay when I invoke the API which means there is minimal cost for the value it adds.

Now I just need to disable the social auto-posting from Wordpress!

Happy Days! �

2 Fix Logic App Connections Managed Identity errors in
Bicep templates

Off the back of my recent post on building an Azure Logic Apps solution for cross-posting on
social media I wanted to export what I’d quickly built and make an easily deployable asset in
Azure using Bicep. Right now there is no way to export deployed artefacts from Azure directly
to Bicep - you must first export to an Azure Resource Manager (ARM) template and then use
the Bicep tooling to convert.

The majority of the time the result is a Bicep template that requires a little tidy up before it
can be used, however, once I’d tidied up my solution, I went to test the Bicep template and
immediately hit upon this error:

“The API connection ‘keyvault’ is not configured to support managed identity.”

8

https://github.com/sjwaight/NoCodeSocialCrossPosting
https://github.com/sjwaight/NoCodeSocialCrossPosting
content/2022-12-20-cross-posting-blog-posts-to-mastodon-twitter-and-linkedin-using-azure-logic-apps.md
https://learn.microsoft.com/azure/azure-resource-manager/bicep/overview

Replace keyvault with whatever the name of the Logic App API Connection is you are using
in Azure.

2.0.1 Create a User Assigned Managed Identity

First off, I thought this was due to my use of a System-Assigned Managed Identity which is
created and managed transparently by an Azure resource such as a Logic App. The beauty of
this type of Managed Identity is that if you delete the resource it was created by, the Managed
Identity is also deleted.

To fix this I thought I’d add a User-Assigned Managed Identity to the Bicep file, so I went ahead
and added the below.

resource managed_service_identity_kv_resource 'Microsoft.ManagedIdentity/userAssignedIdentities@2018-11-30' = {
name: managed_identity_name
location: resource_group_location

}

Now I have a Managed Identity that I can reference elsewhere in the Bicep file without creating
a circular dependency.

2.0.2 Allow Managed Identity to access Key Vault

Next up I can reference this Managed Identity when I create my Key Vault instance. See line 13
in the below GitHub Gist.

resource key_vault_resource 'Microsoft.KeyVault/vaults@2022-07-01' = {
name: key_vault_name
location: resource_group_location
properties: {

sku: {
family: 'A'
name: 'standard'

}
tenantId: subscription().tenantId
accessPolicies: [

{
tenantId: subscription().tenantId
objectId: managed_service_identity_kv_resource.properties.principalId
permissions: {

certificates: []
keys: []
secrets: [

'get'
]

}
}

]
enabledForDeployment: false
enabledForDiskEncryption: false
enabledForTemplateDeployment: false
enableSoftDelete: true

9

softDeleteRetentionInDays: 7
enableRbacAuthorization: false
publicNetworkAccess: 'Enabled'

}
}

2.0.3 Logic App Parameters

Our connections will be listed in the Parameters section of our Logic App in the Bicep template,
and we should find that the authentication type is setup to ManagedServiceIdentity as per
line 9 below.

parameters: {
'$connections': {

value: {
keyvault: {

connectionId: connections_keyvault_resource.id
connectionName: 'keyvault'
connectionProperties: {

authentication: {
type: 'ManagedServiceIdentity'

}
}
id: subscriptionResourceId('Microsoft.Web/locations/managedApis', resource_group_location, 'keyvault')

}
}

}
}

Sadly, none of this solved my issue.

2.0.4 Connection definition

This is where the magic happens. There is currently a gap in ARM and Bicep’s ability to export
/ define the values required to correctly map a Connection to a Managed Identity (there’s an
open bug on GitHub on it). Here’s our Connection definition in the Bicep file.

resource connections_keyvault_resource 'Microsoft.Web/connections@2016-06-01' = {
name: connections_keyvault_name
location: resource_group_location
properties: {

displayName: 'KeyVaultMIAccess'
parameterValueType: 'Alternative'
alternativeParameterValues: {

vaultName: key_vault_name
}
customParameterValues: {}
api: {

name: 'keyvault'
displayName: 'Azure Key Vault'
description: 'Azure Key Vault is a service to securely store and access secrets.'

10

https://github.com/Azure/bicep/issues/5056

iconUri: 'https://connectoricons-prod.azureedge.net/releases/v1.0.1597/1.0.1597.3005/keyvault/icon.png'
brandColor: '#0079d6'
id: subscriptionResourceId('Microsoft.Web/locations/managedApis', resource_group_location, 'keyvault')
type: 'Microsoft.Web/locations/managedApis'

}
}

}

The key lines that solve our issue are as follows. This entry is required to map the Connection
to the Key Vault.

parameterValueType: 'Alternative' alternativeParameterValues: { vaultName: key_vault_name }

So, there we go. We can now you can deploy Azure Logic Apps that use a Managed Service
Identity to connect to an Azure Key Vault!

I’m chalking this post up as “would have saved me a bunch of time” because it took a look of
looking around to get to the ultimate answer. I hope this one saves you some time! Find the full
Bicep file on GitHub.

�

11

https://github.com/sjwaight/NoCodeSocialCrossPosting
https://github.com/sjwaight/NoCodeSocialCrossPosting

	Cross-posting blog posts to Mastodon, Twitter and LinkedIn using Azure Logic Apps
	Fix Logic App Connections Managed Identity errors in Bicep templates

